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ABSTRACT

This paper discusses a new perspective in fitting spatial point process models.
Specifically the spatial point process of interest is treated as a marked point process
where at each observed event x a stochastic process M(x; t), 0 < t < r, is defined.
Each mark process M(x; t) is compared with its expected value, say F (t; θ), to
produce a discrepancy measure at x, where θ is a set of unknown parameters. All
individual discrepancy measures are combined to define an overall measure which
will then be minimized to estimate the unknown parameters. The proposed ap-
proach can be easily applied to data with sample size commonly encountered in
practice. Simulations and an application to a real data example demonstrate the
efficacy of the proposed approach.
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1. INTRODUCTION

In spatial point pattern analysis, a common model fitting procedure is the “minimum con-

trast estimation” (MCE) procedure (e.g., Møller and Waagepetersen 2003), where some

theoretical and empirical summary descriptions of the process are obtained and compared.

Among these summary descriptions, the K-function (see Section 2 for the definition) is

perhaps the most frequently used since its closed-form theoretical expression is available

for many processes (see, e.g., Diggle 2003). Throughout this article, let K(t; θ) and K̂(t)

denote the theoretical and empirical K-functions, respectively, where t is the inter-point

distance (i.e., the lag) and θ is the unknown parameter vector determining the distribution

of the underlying spatial point process. The estimate of θ, θ̂, is defined as the minimizer of

the following discrepancy measure:

U(θ) =

∫ r

0

[K̂c(t)−Kc(t; θ)]2dt, (1)

for some constants c and r which are often referred to as tuning parameters. The con-

stant r in (1) defines the lag set over which the theoretical and empirical K-functions are

compared, where the constant c is used to stabilize the sampling fluctuations in K̂(t).

The main attractiveness of using (1) is its computational simplicity which allows one

to quickly fit and explore a range of possible models. Despite this computational attrac-

tiveness, however, it has been long criticized due to the arbitrariness associated with the

selection of the tuning parameters r and c (see, e.g., Cressie 1993). The optimal choice

of these parameters, in particular c, is highly dependent on the underlying spatial point

process. For example, Diggle (2003) recommended using c = 0.25 for aggregated (i.e.,

clustered) point patterns but c = 0.5 for inhibitive (i.e., regular) point patterns. Guan and

Sherman (2007) found that a good choice of c also depends on the value of r. In particu-

lar, they found that the recommended value c = 0.25 was not “optimal” for some cluster

processes since c ≈ 1, when combined with an appropriately selected r value, often led to
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much improved results than c = .25. Clearly the lack of a model-free choice for the tuning

parameters is undesirable.

To avoid the selection of c, Diggle (2003) proposed the following alternative to (1):

U(θ) =

∫ r

0

w(t)[K̂(t)−K(t; θ)]2dt, (2)

where w(t) is a weight function that is inversely proportional to the variance of K̂(t). For

Poisson processes it is suggested to use w(t) = t−2. In general, however, the variance of

K̂(t) is difficult to obtain which often makes (2) even more difficult to work with than (1).

Guan and Sherman (2007) proposed a subsampling approach to estimate the variance of

K̂(t) and to subsequently obtain w(t). However, their approach requires a relatively large

sample size and thus may not be appropriate for many data commonly encountered in

practice with relatively small sample size. In addition, the use of subsampling necessarily

involves the choice of a new tuning parameter, that is, the subblock size. Although it is

expected that the choice of the subblock size does not influence the estimation greatly, in

general an “optimal” value of it is often difficult to obtain.

This article looks at the use of (2) from a new perspective. Specifically the spatial point

process is treated as a marked point process where at each observed event x a stochastic

process M(x; t), 0 < t < r, is also observed. This is related to the recent work of Loh and

Stein (2004) where they assigned one single “mark” variable (but not a stochastic process

as being considered here) to each event. The mark process M(x; t) will be defined in

Section 2. In what follows let N denote the spatial point process of interest and λ be the

first-order intensity of the process. It will be shown that E[M(x; t)] = λK(t; θ). This

new perspective allows one to form individual discrepancy measures that are analogous

to (2) by comparing each mark process M(x; t) with the target function λK(t; θ). All

the individual discrepancy measures can then be combined together to define an overall

measure. A simple expression for the weight function w(t) will be given. In contrast

to Guan and Sherman’s approach, the calculation of w(t) does not require any additional

2



tuning parameters and thus is more objective. Furthermore, the proposed approach can be

applied without difficulty to both small and large data sets.

The rest of the article is organized as follows. Section 2 formally introduces the pro-

posed method and Section 3 studies the asymptotic properties of the resulting estimator.

Section 4 contains a simulation study whereas Section 5 presents an application to some

real data.

2. THE PROPOSED METHOD

Throughout this section, assume that N is a stationary and isotropic spatial point process.

For an arbitrary Borel set in R2, let |B| denote the area of B and N(B) denote the number

of points from N in B. Let dx denote an infinitesimal region which contains x ∈ R2 and

||·|| denote the Euclidean norm. The second-order intensity function (SIF) of N is defined

as (e.g., Diggle 2003)

λ2(x,y) ≡ lim
|dx|,|dy|→0

{
E[N(dx)N(dy)]

|dx||dy|
}

.

Clearly λ2(x,y) = λ2(||x− y||) due to isotropy, where λ2(·) now is a function defined on

R. Let λ be the first-order intensity of the process. In relation to the SIF, the K-function

can be expressed as:

λ2K(t) = 2π

∫ t

0

uλ2(u)du.

In what follows, let J(t) ≡ λ2K(t) and let D denote the domain of interest. The

empirical versions of J(t), ignoring edge effect, can be defined as:

Ĵ(t) =
1

|D|
∑∑

x,y∈N∩D,y 6=x

I(||y − x|| ≤ t), (3)

where I(·) is an indicator function. Guan and Sherman (2007) showed that (3) is consistent

for J(t) and is asymptotically normal under suitable conditions.

From (3) it can be seen that each event x ∈ N ∩ D contributes to the calculation of

Ĵ(t) with the number of neighboring events in N that are within t distance of itself. In
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view of this observation, the point process N can be treated as a marked point process.

Specifically, let the events of N be the points of the new process. For each point x ∈ N ,

define the mark value at x as:

M(x; t) =
∑

y∈N∩D,y 6=x

I(||y − x|| ≤ t).

Note that if |D| is replaced by N(D), then (3) is simply the sample average of marks

observed at points within D. Ignoring edge effect, a simple application of Campbell’s

theorem (Stoyan and Stoyan, 1994) and conditional probability yields that

E[M(x; t)|x ∈ N ] = 2π

∫ t

0

uλ2(u)du/λ = λK(t).

Let σ2(x; t) ≡ V ar[M(x; t)|x ∈ N ]. Note that σ2(x; t) is independent of x due to station-

arity. For simplicity, let σ2(t) denote σ2(x; t). A “method-of-moment” estimator of σ2(t)

is given as follows:

σ̂2(t) =
1

N(D)− 1

∑
x∈N∩D

[M(x; t)− M̄(t)]2,

where M̄(t) =
∑

x∈N∩D M(x; t)/N(D). In other words, σ̂2(t) is simply the sample vari-

ance of the observed marks. Section 3 establishes the strong consistency of σ̂2(t) for σ2(t)

under an increasing domain setting. Specifically it will be shown that σ̂2(t) converges to

σ2(t) uniformly almost surely for t ∈ (0, r).

In terms of each observed mark process M(x; t), a discrepancy measure that is analo-

gous to (2) can be defined as:

U(θ;x) =

∫ r

0

1

σ̂2(t)
[M(x; t)− λK(t; θ)]2dt.

This further leads to the following overall discrepancy measure:

U(θ) =
1

|D|
∑

x∈N∩D

∫ r

0

1

σ̂2(t)
[M(x; t)− λK(t; θ)]2dt. (4)
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Typically the estimation of λ is done outside of the minimization of (4). For example, a

strongly consistent estimator for λ is given by λ̂ = N(D)/|D|. Replace λ in (4) by λ̂ and

define K̂(t) = Ĵ(t)/λ̂2. Let U (i)(θ) and f (i)(t; θ) denote the ith gradient vectors of U(θ)

and f(t; θ) with respect to θ, respectively, where f(t; θ) is an arbitrary function depending

on both t and θ. Then

U (1)(θ) = − 2λ̂

|D|
∑

x∈N∩D

∫ r

0

K(1)(t; θ)

σ̂2(t)
[M(x; t)− λ̂K(t; θ)]dt

= − 2λ̂

|D|
∫ r

0

K(1)(t; θ)

σ̂2(t)

[ ∑
x∈N∩D

M(x; t)− λ̂N(D)K(t; θ)

]
dt

= −2λ̂3

∫ r

0

K(1)(t; θ)

σ̂2(t)

[
Ĵ(t)

λ̂2
−K(t; θ)

]
dt

= −2λ̂3

∫ r

0

K(1)(t; θ)

σ̂2(t)

[
K̂(t)−K(t; θ)

]
dt.

Ignoring the term λ̂3, note that U (1)(θ) is also the derivative of the following discrepancy

measure with respect to θ:

U(θ) =

∫ r

0

1

σ̂2(t)

[
K̂(t)−K(t; θ)

]2

dt. (5)

Thus (5) is an equivalent but computationally simpler alternative to (4). Note that (5) (and

thus (4)) is a special case of (2) with w(t) = 1/σ̂2(t).

A potential problem with using (4) and (5), and (2) in general, is the weight function

being used is often unbounded when t → 0, which may lead to numerical instability for

the resulting estimation procedure (e.g., Diggle 2003). A solution for this is to define a

lower limit r0 and let w(t) = w(r0) for all t < r0. In terms of (4) and (5), this implies to

set σ2(t) and σ̂2(t) equal to σ2(r0) and σ̂2(r0) for t < r0, respectively. Guan and Sherman

(2007) found that the choice of r0 affected the estimation minimally in their setting where

w(t) was obtained by subsampling. The same holds true for (4) and (5). Thus the use of a

lower limit r0 to bound w(t) presents little practical constraint.

We study in the next section the asymptotic properties of the estimator of θ that is
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obtained by minimizing (4). With a slight abuse of notation, let σ2(t) and σ̂2(t) denote the

truncated versions of the true and estimated variances of M(x; t), i.e. σ2(t) = σ2(r0) and

σ̂2(t) = σ̂2(r0) for all t < r0. Assume that σ2(t) is bounded below from zero for t ≥ r0.

The resulting weight function w(t) will thus be bounded above from infinity.

3. ASYMPTOTIC PROPERTIES OF θ̂ FOR STATIONARY POINT PROCESSES

3.1 Conditions

Let N be a stationary and ergodic spatial point process whose distribution is determined

by a p × 1 parameter vector, θ. In what follows, let θ0 denote the true parameter vector,

and Θ denote the parameter space of θ, where Θ is compact and θ0 is an interior point of

Θ. Define the kth-order intensity function of N :

λk(x1, · · · ,xk) ≡ lim
|dx1|,···,|dxk|→0

{
E[N(dx1) · · ·N(dxk)]

|dx1| · · · |dxk|
}

.

Since N is stationary, λk(x1, · · · ,xk) = λk(x2 − x1, · · · ,xk − x1), where λk(·) now is

function defined on Rk−1. Let C denote a constant that may assume different values.

Assume

λk(·), k = 1, · · · , 4, are bounded, and
∫
|λ∗4(u1,u2,u2 + u3)|du2 < C, (6)

where λ∗4(u1,u2,u2+u3) = λ4(u1,u2,u2+u3)−λ2(u1)λ2(u3). Condition (6) ensures the

existence of the (standardized) limiting variance of Gn(r; θ) to be defined in (9). Heinrich

(1988) showed that (6) holds if N is Brillinger-mixing, examples of which include Pois-

son processes, Poisson cluster processes, a certain class of stationary renewal processes

and others. For a stationary log Gaussian Cox process (Møller et al., 1998), let R(u) de-

note the correlation function of the underlying Gaussian random field. Then (6) holds if
∫ |R(u)| du < ∞ (Guan and Sherman, 2007).

Consider a sequence of domains of interest Dn. Let Un(θ) be U(θ) in (4) obtained

on Dn and θ̂n be the estimator of θ by minimizing Un(θ). The large sample properties
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of θ̂n will be studied under an increasing domain setting. Specifically let ∂Dn denote the

boundary of Dn and |∂Dn| denote the length of ∂Dn. Assume

|Dn| = O(n2), |∂Dn| = O(n). (7)

Condition (7) ensures that Dn becomes increasingly large in all directions as n increases.

Many commonly encountered domain shapes satisfy this assumption, e.g., circles with

radius of order O(n), rectangles with the lengths of all sides of order O(n), etc.

The dependence in N is quantified by a strong mixing coefficient (Rosenblatt 1956).

For two arbitrary points in x,y ∈ R2, let d0(x,y) ≡ max1,2{|x1 − y1|, |x2 − y2|}, where

x = (x1, x2) and y = (y1, y2). Then for any subsets A, B ofR2 define the distance between

them as d(A,B) = inf{d0(x,y) : x ∈ A,y ∈ B}. Let E1 be a compact and convex subset

ofR2 andF(E1) be the σ-algebra generated by the random points falling in N∩E1. Define

the following strong mixing coefficient:

α(p; k) ≡ sup{|P (A1 ∩ A2)− P (A1)P (A2)| : A1 ∈ F(E1), A2 ∈ F(E2),

E2 = E1 + x, |E1| = |E2| ≤ p, d(E1, E2) ≥ k},

where the supremum is taken over all E1 ⊂ R2, and over all x ∈ R2 such that d(E1, E2) ≥
k. Assume the following mixing condition:

sup
p

α(p; k)

p
= O(k−ε) for some ε > 2. (8)

Condition (8) ensures that the dependence in N decreases as the distance k increases.

Specifically the dependence decreases at a polynomial rate in k. As the area increases, (8)

allows the dependence to increase at a rate controlled by the area p. Any point process with

finite dependence range, for example, the Matérn cluster process (e.g., Stoyan and Stoyan

1994), satisfies this condition. It is also satisfied by the Strauss point process due to Jensen

(1993a, b) and by the log Gaussian Cox process (e.g., Møller and Waagepetersen 2003) if

the correlation of the underlying Gaussian random field decays at a polynomial rate faster
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than 2 + ε and has a spectral density bounded below due to Corollary 2 of Doukhan (1994,

p.59).

3.2 Results

The following theorem establishes the consistency of σ̂2
n(t) and θ̂n.

Theorem 1. Assume that condition (7) holds, N is ergodic, K(t; θ) is bounded and

continuous with respect to both t and θ, and K(t; θ1) 6= K(t; θ2) on a set of positive

Lebesgue measure if θ1 6= θ2. Then

1. supt∈(0,r) |σ̂2
n(t)− σ2(t)| → 0 in probability,

2. θ̂n exists and is consistent for θ.

Proof. See Appendix A.

To establish the asymptotic normality, let F (t; θ) ≡ λK(t; θ). Define

Gn(r; θ) =
1

|Dn|
∑∑

x,y∈N∩Dn,y 6=x

∫ r

||y−x||

F (1)(t; θ)

σ2(t)
dt. (9)

Assume the following mild moment condition on Gn(r; θ0):

sup
n

E

[∣∣∣
√
|Dn| × {Gn(r; θ0)− E[Gn(r; θ0)]}

∣∣∣
2+δ

]
≤ C for some δ > 0. (10)

Condition (10) is only slightly stronger than the existence of the (standardized) asymptotic

variances of Gn(r; θ0). If N is Brillinger-mixing and F (1)(t; θ0) is bounded, then Theorem

3 of Jolivet (1978) yields that (10) holds for all δ > 0.

Theorem 2. Assume all conditions in Theorem 1, conditions (6), (8) and (10) hold,

F (i)(t; θ0), i = 1, 2, are bounded. Then
√
|Dn|(θ̂n−θ0) → N{0, B(θ0)

−1Σ(θ0) [B(θ0)
−1]

′},

where the notation ′ signifies the matrix transpose operation,

B(θ0) = λ

∫ r

0

F (1)(t; θ0)
[
F (1)(t; θ0)

]′
σ2(t)

dt, (11)

Σ(θ0) = lim
n→∞

|Dn|V ar[Gn(r; θ0)].
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Proof. See Appendix B.

Let σ2(t1, t2) ≡ limn |Dn|Cov[Ĵn(t1), Ĵn(t2)]. An alternative expression of Σ(θ0) which

follows from some elementary derivations is given as:

∫ r

0

∫ r

0

σ2(t1, t2)

σ2(t1)σ2(t2)
F (1)(t1; θ0)

[
F (1)(t2; θ0)

]′
dt1dt2. (12)

Let θ̂c
n be the estimate of θ from (1) that is obtained on Dn. Guan and Sherman (2007)

showed that
√
|Dn|(θ̂c

n−θ0) → N{0, B(θ0; c)
−1Σ(θ0; c) [B(θ0; c)

−1]
′} under suitable con-

ditions, where

B(θ0; c) =

∫ r

0

J (1)(t; θ0)
[
J (1)(t; θ0)

]′

[J(t; θ0)]
2−2c dt, (11′)

Σ(θ0) =

∫ r

0

∫ r

0

σ2(t1, t2)

[J(t1; θ0)]
2−2c [J(t2; θ0)]

2−2c J
(1)(t1; θ0)

[
J (1)(t2; θ0)

]′
dt1dt2. (12′)

Thus the proposed approach is closely related to (1) in the sense that σ2(t) in (11) and (12)

essentially plays the same role as [J(t; θ0)]
2−2c in (11′) and (12′). Unlike (1), the proposed

approach depends only on r but not on any other tuning parameter such as c in (1) and thus

is more objective.

4. SIMULATION

This section evaluates the finite-sample performance of the proposed methods in two im-

portant classes of spatial point process models. The first class is a Poisson cluster process

whereas the second is a simple inhibition process of the first type given by Matérn (1960,

Chapter 3). One thousand realizations from each type of process were simulated on a unit

square with λ = 100, 400. For the Poisson cluster process, the expected number of parents

ρ = 25, 100, and the position of each offspring relative to their parents followed a radially

symmetric Gaussian random variable (see, e.g., Diggle 2003). The spread parameter σ

was set at .01, .02 and .04 and the expected number of offspring per parent µ = 4. For the

simple inhibition process, the inhibition parameter δ was .02 and .03 for λ = 100 and .01
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and .015 for λ = 400. All pairs with an inter-point distance less than δ were removed from

a simulated homogeneous Poisson process.

For each realization, the proposed method was used to estimate the pertaining param-

eters. The smallest lag used in all estimations was .001, whereas the largest lag was 3σ,

4σ and 5σ in the Poisson cluster case and 2δ, 3δ and 4δ in the simple inhibition case. The

MCE procedure given in (1) was also applied with c = .25, 1 in the Poisson cluster case

and c = .25, .5 in the simple inhibition case. Note that c = .25 and c = .5 are the recom-

mended values of c, whereas c = 1 and c = .25 are some “inappropriate” alternatives for

cluster and inhibition processes, respectively.

Table 1 lists the mean squared errors (MSEs) in the Poisson cluster case. Note that the

parameter µ is a nuisance parameter and thus only the results on ρ̂ and σ̂ are reported. An

interesting finding is that when (1) was used c = 1 not necessarily led to inferior results to

c = .25. In fact when r = 3σ, c = 1 almost consistently yielded better results than c = .25.

When r = 5σ, however, c = .25 often was better than c = 1. This observation agrees with

the finding of Guan and Sherman (2007) that the choice of c is highly dependent on r.

Given the fact that r is mostly chosen arbitrarily, the recommendation of using c = .25 (or

smaller) for this type of process appears to be questionable. On the other hand, the MSEs

from (5) are consistently smaller than the larger MSEs between c = .25 and c = 1 and

are comparable to (and in fact often smaller than) the smaller MSEs between c = .25 and

c = 1. This is true regardless the value of r. In particular, in the case of λ = 400, the MSEs

from (5) for both ρ̂ and σ̂ are the smallest in in almost all cases. This suggests improved

estimates can be obtained by using (5) in this case.

Table 2 lists the MSEs in the simple inhibition case. Note that δ can be estimated by

the nearest neighbor distance between two events but not by any of the discussed MCE

procedures. Thus only results on the intensity parameter of the original Poisson process

are reported. Unlike the Poisson cluster case, it can be seen that the recommended value
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c = .5 always yielded better results than c = .25. However, this does not necessarily mean

that this will hold true for all other inhibition type of processes or for other values of the

upper limit r. Nevertheless, the MSEs from (5) are all very close to and often virtually

the same as those from c = .5. Combining the findings from Table 1 and Table 2, it

can be concluded that the proposed model fitting procedure using (5) works well for both

the cluster and inhibition process models being considered. Note that the strength of the

procedure is that it has eliminated the tuning parameter c used in (1) and thus is more

objective than the commonly used procedure based on (1).

5. AN APPLICATION

The data set being studied in this section was collected by Kari Leinonen and Markku

Nygren at the University of Helsinki, Finland. It consists of the locations of 114 birch

trees in a 50m× 50m region. Figure 1 plots these locations which were transformed onto

a unit square. Møller et al. (1998) fit a log Gaussian Cox process model to the data.

Specifically, they used an exponential covariance function R(t) = σ2 exp(−βt) for the

underlying Gaussian process generating the intensity of the point process and obtained

the fit (β̂ = 16, σ̂2 = 1.65). However, the fit to data for the estimated model was very

unsatisfactory due to the fact that the point-to-nearest-event empirical density function

(EDF) F̂ (t) (not shown) is way above the upper simulation envelope obtained from the

fitted model.

The same class of log Gaussian Cox process models was fit to the data using (5) with

r = .2, .3, .4. The estimates are (β̂ = 8.1413, σ̂2 = 1.7973) for r = .2, (β̂ = 8.4799, σ̂2 =

1.8124) for r = .3 and (β̂ = 8.7423, σ̂2 = 1.8215) for r = .4. Thus all new estimates

suggest a much stronger dependence in the underlying Gaussian random field Z(x) than

Møller et al.’s estimates. Figure 2 plots the nearest neighbor EDF Ĝ(t), the point-to-

nearest-event EDF F̂ (t) and the simulated envelopes from the fitted model with (β̂ =

11



8.7423, σ̂2 = 1.8215). The fit appears to be quite good since both Ĝ(t) and F̂ (t) are

completely within the corresponding simulation envelopes. Thus the log Gaussian Cox

process model appears to be appropriate for the data. This result agrees well with those of

Guan (2006) and Guan (2007) but is in contrast to Møller et al.’s result.

APPENDIX A: PROOF OF THEOREM 1

Proof. Let λ̂n ≡ N(Dn)
|Dn| . λ̂n → λ almost surely due to ergodicity and condition (7). Note

that Ĵn(t) is non-decreasing in t. Following from the proof of the Glivenko-Cantelli the-

orem (e.g., Durrett 1996, 59-60), supt∈(0,r) |Ĵn(t) − J(t; θ0)| → 0 almost surely due to

ergodicity and (7).

Proof of consistency of σ̂2
n(t): Note that M̄n(t) = Ĵn(t)/λ̂n. Thus if t ≥ r0, then

σ̂2
n(t) =

|Dn|
N(Dn)− 1

{
1

|Dn|
∑

x∈N∩Dn

[M(x; t)]2

}
− N(Dn)

N(Dn)− 1

[
Ĵn(t)/λ̂n

]2

.

The second term on the right side of the equation converges uniformly almost surely to

[J(t; θ0)/λ]2. For the first term, note that M(x; t) is a non-decreasing function of t. Thus

sup
t∈(0,r)

∣∣∣∣∣
1

|Dn|
∑

x∈N∩Dn

[M(x; t)]2 − E
{
[M(x; t)]2|x ∈ N

}
∣∣∣∣∣ → 0

almost surely due to ergodicity and (7). Thus supt∈(0,r) |σ̂2
n(t)− σ2(t)| → 0 almost surely.

Proof of existence of θ̂n: Consider any sequence θm → θ. Then |Un(θm)−Un(θ)| → 0

due to continuity of K(t; θ). Thus Un(θ) is continuous. The existence of θ̂n then follows

due to the fact that Θ is compact.

Proof of consistency of θ̂n: First define

U∗
n(θ) = 2

∫ r

0

1

σ̂2
n(t)

[
Ĵn(t)− λ̂n

λ
J(t; θ0)

]
[J(t; θ0)− J(t; θ)] dt

+
λ̂n

λ

∫ r

0

1

σ̂2
n(t)

[J(t; θ0)− J(t; θ)]2 dt.

12



Note that θ̂n = argminθU
∗
n(θ) and U∗

n(θ̂n) ≤ U∗
n(θ0). Note also U∗

n(θ0) = 0. Thus
∫ r

0

1

σ̂2
n(t)

[
J(t; θ0)− J(t; θ̂n)

]2

dt

≤ −2λ

λ̂n

∫ r

0

1

σ̂2
n(t)

[
Ĵn(t)− λ̂n

λ
J(t; θ0)

] [
J(t; θ0)− J(t; θ̂n)

]
dt. (13)

Since σ̂2
n(t) converge to σ2(t) uniformly almost surely and σ2(t) is bounded below from

zero due to the truncation, we have

sup
t∈(0,r)

∣∣∣∣
1

σ̂2
n(t)

− 1

σ2(t)

∣∣∣∣ → 0 (14)

almost surely. Note that (14) implies

sup
t∈(0,r)

∣∣∣∣
1

σ̂2
n(t)

∣∣∣∣ < C (15)

almost surely. The right side of the inequality given in (13) thus goes to zero due to (15),

the assumption that K(t; θ) is bounded, λ̂n → λ almost surely and Ĵn(t) → J(t; θ0)

uniformly almost surely for t ∈ (0, r). Further since K(t; θ1) 6= K(t; θ2) on a set of

positive Lebesgue measure,
∫ r

0
[J(t; θ0)− J(t; θ)]2 dt is continuous with respect to θ and

is zero only when θ = θ0. Thus θ̂n → θ in probability.

APPENDIX B: PROOF OF THEOREM 2

Proof. To prove Theorem 2, first note that U
(1)
n (θ0) + U

(2)
n (θ∗n)(θ̂n − θ0) = 0 for some

θ∗n = θ0 + Λ(θ̂n − θ0), where Λ is a p× p matrix. Further

U (1)
n (θ0) = − 2

|Dn|
∑

x∈N∩Dn

∫ r

0

1

σ̂2
n(t)

[ ∑

y∈N∩Dn,y 6=x

I(||y − x|| ≤ t)− F (t; θ0)

]
F (1)(t; θ0)dt.

U (2)
n (θ∗n) =

2

|Dn|
∑

x∈N∩Dn

∫ r

0

1

σ̂2
n(t)

F (1)(t; θ∗n)
[
F (1)(t; θ∗n)

]′
dt

− 2

|Dn|
∑

x∈N∩Dn

∫ r

0

1

σ̂2
n(t)

[ ∑

y∈N∩Dn,y 6=x

I(||y − x|| ≤ t)− F (t; θ∗n)

]
F (2)(t; θ∗n)dt.

13



Let Xn ∼ Yn denote that Xn and Yn have the same limiting distribution. Define

An(θ0) =
1

|Dn|
∑

x∈N∩Dn

∫ r

0

1

σ2(t)

[ ∑

y∈N∩Dn,y 6=x

I(||y − x|| ≤ t)− F (t; θ0)

]
F (1)(t; θ0)dt.

The proof of asymptotic normality consists of the following four steps:

Step 1: U
(2)
n (θ∗n) → 2B(θ0) in probability,

Step 2:
√
|Dn|(θ̂n − θ0) ∼ −B(θ0)

−1
√
|Dn|U (1)

n (θ0)/2,

Step 3:
√
|Dn|U (1)

n (θ0)/2 ∼
√
|Dn|An(θ0),

Step 4:
√
|Dn|An(θ0) → N

{
0, B(θ0)

−1Σ(θ0) [B(θ0)
−1]

′} in distribution.

Proof of Step 1: The first term of U
(2)
n (θ∗n) converges to 2B(θ0) due to ergodicity,

θ∗n → θ0, F (1)(t; θ) is bounded and continuous, and (14). Note the second term of U
(2)
n (θ∗n)

can be rewritten as
∫ r

0

1

σ̂2
n(t)

[
Ĵn(t)− λ̂nF (t; θ∗n)

]
F (2)(t; θ∗n)dt,

which converges to zero due to the facts that θ∗n → θ0, λ̂n → λ almost surely, and Ĵn(t) →
J(t; θ0) uniformly almost surely, where J(t; θ0) = λF (t; θ0), and (14). Thus Step 1 is

proved.

Proof of Step 2: This follows directly from Step 1 and Slutsky’s theorem.

Proof of Step 3: This is due to (14).

Proof of Step 4: Note that

Gn(r; θ0) =
1

|Dn|
∑

x∈N∩Dn

∫ r

0

1

σ2(t)

[ ∑

y∈N∩Dn,y 6=x

I(||y − x|| ≤ t)

]
F (1)(t; θ0)dt,

where Gn(r; θ0) is defined as in (9). Since An(θ0) = Gn(r; θ0) − E [Gn(r; θ0)], it is only

needed to show that

√
|Dn| {Gn(r; θ0)− E [Gn(r; θ0)]} → N

{
0, B(θ0)

−1Σ(θ0)
[
B(θ0)

−1
]′}

14



in distribution. The existence of Σ(θ0) is guaranteed by condition (6). The rest follows

similarly as in the proof of Guan et al. (2004) due to conditions (7), (8) and (10). Thus

Theorem 2 is proved.
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Figure 1. Locations of birches.
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Figure 2. Goodness-of-fit plots using the nearest neighbor (left) and the point-

to-nearest-event (right) distribution functions. The solid curves are the empirical

distribution functions, whereas the dotted curves are the envelopes from 19 simu-

lations of the fitted model.
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Table 1. Estimated mean squared errors (MSEs) of the different estimators from

simulations in the stationary Poisson cluster case. Each MSE value is divided by

the squared value of the target parameter that it corresponds to.

r = 3σ r = 4σ r = 5σ

λ σ c = .25 c = 1 (5) c = .25 c = 1 (5) c = .25 c = 1 (5)
ρ̂ 100 .01 .0796 .0576 .0585 .0549 .0526 .0526 .0548 .0550 .0549

100 .02 .1084 .0856 .0876 .0837 .0837 .0836 .0889 .0928 .0919
100 .04 .2828 .2764 .2725 .3084 .3457 .3339 .3783 .4444 .4314
400 .01 .0235 .0215 .0211 .0216 .0216 .0213 .0234 .0240 .0234
400 .02 .0501 .0489 .0455 .0524 .0553 .0526 .0603 .0656 .0618
400 .04 .2665 .2728 .1851 .3166 .3499 .2917 .3730 .4356 .3734

σ̂ 100 .01 .2066 .0203 .0248 .0197 .0105 .0113 .0133 .0097 .0100
100 .02 .4054 .0328 .0659 .0541 .0173 .0197 .0247 .0190 .0192
100 .04 .7788 .0967 .1221 .0686 .0424 .0448 .0554 .0534 .0501
400 .01 .0085 .0054 .0057 .0052 .0043 .0044 .0054 .0053 .0050
400 .02 .0169 .0102 .0103 .0112 .0101 .0096 .0125 .0139 .0121
400 .04 .0681 .0383 .0283 .0381 .0376 .0315 .0439 .0538 .0430

Table 2. Estimated mean squared errors (MSEs) of the different estimators from

simulations in the simple inhibition case. Each MSE value is divided by the

squared value of the target parameter that it corresponds to.

r = 2δ r = 3δ r = 4δ

λ δ c = .25 c = .5 (5) c = .25 c = .5 (5) c = .25 c = .5 (5)
100 .02 .0468 .0345 .0354 .0225 .0190 .0195 .0170 .0153 .0155

.03 .0512 .0463 .0417 .0324 .0306 .0306 .0291 .0285 .0284
400 .01 .0095 .0082 .0084 .0055 .0050 .0051 .0044 .0041 .0041

.015 .0110 .0100 .0100 .0080 .0077 .0077 .0073 .0071 .0071
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